BOOK:一文读懂椭圆曲线加密学

编者按:本文来自蓝狐笔记,作者:LaneWager,来源于medium,由“蓝狐笔记”公众号社群的“王泽龙”翻译,Odaily星球日报经授权转载。前言:本文是关于椭圆曲线加密的非常基础的介绍。内容虽然基础,但对于椭圆曲线加密的门外汉来说,简单易懂,适合于初学者。这是一篇椭圆曲线密码学的基本介绍。我假设本文的绝大多数读者来这里的目的是:了解为什么椭圆曲线加密是一种有效的加密工具,以及它为什么有效。我试图用通俗的方式来解释它,我将跳过论证与实现的细节,转而聚焦在其运行原则上。

椭圆曲线示例它是做什么的?

椭圆曲线加密是一种加密数据方法,只有特定人,才能对其进行解密。它在现实生活中有许多应用场景,但其主要应用在于加密互联网上的数据与流量。例如,椭圆加密曲线可以用于确保一封邮件何时发送,且除了收件人外无人可以读取该邮件。椭圆曲线加密是公钥加密技术公钥加密风情万千,椭圆曲线加密只是其中一种风味。其他加密算法还有RSA,DiffieHelman,等等。我将简单交代公钥加密的大体背景作为开头,进而展开我们后续的阐述,以此更深入理解椭圆曲线加密。有空时,你可以花些时间深入研究公钥密码学知识。如下图所示,公钥加密允许以下过程发生:

区块链开发平台Alchemy已开放自定义Webhooks服务:4月6日消息,区块链开发平台Alchemy已对所有人开放自定义Webhooks服务,允许实现实时交易、DeFi清算、NFT铸造与批准等用例,可为开发者提供一系列开发支持服务。[2023/4/6 13:47:40]

http://itlaw.wikia.com/wiki/Key_pair上图展示了两个钥匙,一个公钥和一个私钥。这些密钥用于加密和解密数据,这使得世界上的任何人都可以在传输时看到加密数据,但无法读取信息。让我们假设Fcebook将收到来自特朗普的私密贴。Facebook需要能够确保特朗普通过网络发文时,没人可在其中阅读该消息。使用公钥加密后,整个数据传输过程呈现如下状态:l特朗普告知Facebook他将向后者发送一篇私密帖lFacebook将其公钥发送给特朗普l特朗普使用公钥加密其帖子:“我喜爱福克斯与朋友们”+公钥=“s80s1s9sadjds9s”l特朗普只把加密后的信息发送给FacebooklFacebook使用他们的私钥解密消息:“s80s1s9sadjds9s”+公钥=“我喜爱福克斯与朋友们”如你所见,这是一项非常有用的技术。以下是其中的一些要点:l公钥可发送给任何人,它是公开的l私钥必须被妥善保管,因为如果某人获取了私钥,他们便可以解密信息l计算机可以迅速地用公钥来加密消息,并用私钥来解密消息l如果没有私钥,计算机可能需要花费极长的时间来破解加密后的消息它是怎样运作的:陷门函数所有公钥加密算法的关键在于它们各自都有其独特的陷门函数。陷门函数只能被单向计算,或者至少只能容易地单向计算不是陷门函数:A+B=C如果被给到A与B,我就可以算出C。问题是如果我被给到B与C,我也可以算出A。并非是陷门函数。陷门函数:“我喜爱福克斯与朋友们”+公钥=“s80s1s9sadjds9s”如果我被给到“我喜爱福克斯与朋友们”+公钥,我可以得出“s80s1s9sadjds9s”,但是如果我被给到“s80s1s9sadjds9s”与公钥,那我无法得出信息:“我爱福克斯与朋友们”。在RSA中,陷门函数主要取决于将大数字纳入其主要因子的难度。公钥:944,871,836,856,449,473私钥:961,748,941and982,451,653在以上的例子中,公钥是一个非常大的数字,私钥是公钥的两个主要因子。这是陷门函数的一个好的例子,因为在私钥中很容易将多个数字相乘以获取公钥,但如果你拥有的只是公钥,那将花费一台电脑很长的时间才能重建私钥。注意:在真实的加密中,私钥需要200+位数以上的长度以确保安全。是什么让椭圆曲线加密与众不同

以太坊Layer 2总锁仓量升至70亿美元,7日涨幅23.02%:金色财经报道,据L2BEAT数据显示,当前以太坊Layer 2总锁仓量升至70亿美元,7日涨幅23.02%。其中,锁仓量前五分别为:ArbitrumOne(38.7亿美元,7日涨幅22.9%);Optimism(21.2亿美元,7日涨幅26.83%);dYdX(3.31亿美元,7日跌幅0.99%);ImmutableX(1.65亿美元,7日涨幅55.66%);MetisAndromeda(1.33亿美元,7日涨幅12.26%)。[2023/3/18 13:12:22]

人们使用椭圆曲线加密的理由跟RSA完全相同。它生成公私钥对并允许两方安全沟通。然而,椭圆曲线加密有一胜过RSA的优势。椭圆曲线加密中256位数的密钥所提供的安全性与RSA算法中3072位数密钥所提供的安全性相同。这意味着在资源有限的系统中,如智能手机、嵌入式电脑、加密网络,椭圆曲线加密相较于RSA加密算法,它使用的硬盘空间和带宽不到RSA算法的10%。椭圆曲线加密的陷门函数这可能是绝大多数读者阅读本文的原因。这是椭圆曲线加密有别于RSA加密算法的部分,也是它的特殊之处。陷门函数类似于池中的数学游戏。我们从曲线上的某一点开始。我们使用一个“点函数”来发现一个新的点。不断重复“点函数”并围绕曲线跳跃,直到我们最终抵达最后一个点上。让我们看看以下整个算法。

以太坊日内涨超5.00%,现报1756美元/枚:金色财经报道,行情显示,以太坊日内涨超5.00%,现报1756美元/枚。[2023/3/14 13:03:59]

https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/2/l从A点开始;lA点B=-Cl从-C到C跨X轴反射;lA点C=-Dl从-D到D跨X轴反射;lA点D=-El从-E到E跨X轴反射这是一个伟大的陷门函数,因为如果你知道哪里是起点以及需要多少跳才能达到终点E,那么找到终点会很容易。从另一方面来说,如果你知道的只是起点与终点的位置,那么,要发现需要多少跳才能抵达终点几乎是不可能的。公钥:起点A,终点E;私钥:从A到E的跳数有问题吗?以下是我初次了解椭圆曲线加密时所产生的相关问题。希望我能妥善地解决它们。如何发现第二点?如果点函数只是在两点之间画一条线,难道不需要第二点来帮助开始吗?回答:不需要。第二点实际上是P点函数P(让我们假设第一个点被称为P)P点函数P=-R那么,什么是P点函数P?它实际上只是P的切线。请看以下图片:

安全团队:yVaren项目存在恶意提案风险,请用户注意保护资金安全:金色财经消息,来自成都链安社区成员情报显示,yVaren项目中有人发起了一个恶意提案(提案ID:0)。成都链安安全团队分析发现:通过该提案,可以将yVaren项目金库的VRN代币全部授权给提案者(0xc59d7e226c8f222e2142bf0f4b3efa83370f8cab),若提案执行,那么提案者可将金库中所有VRN代币转移。目前提案还未执行,请用户注意保护资金安全。

据此前报道,Varen表示,某恶意行为者拟清空已停用的金库,VRN质押用户请尽快提现。[2022/8/15 12:26:16]

https://devcentral.f5.com/articles/real-cryptography-has-curves-making-the-case-for-ecc-20832如果点函数产生一条线路会走到某个极端,会发生什么?如果线没有抵达靠近原点的曲线,我们实际上可以定义一个最大X值,其中线将回绕并从头开始。有关示例,请参见下图。

Aptos生态订单簿协议Econia已上线v2版本:8月9日消息,Aptos生态订单簿协议Econia已上线v2版本,引入独立订单簿兑换功能,要求用户注册特定市场的交易账户,选择性地委托托管人、存入抵押品,并使用其抵押品在相应的市场进行交易。此外v2版本现在允许用户直接根据账面结算市场订单,无需支付任何费用。(Medium)[2022/8/9 12:12:11]

https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/2/我理解了暗门函数,但实践中公私钥是如何创建的?它们是如何与要加密的数据一起使用的?这是一个好问题,但它要求更深入的答案。在这篇文章中我给出了关于RSA与椭圆曲线加密较为通俗的解释。然而,还有更多技术资源,我期望你去研究它们。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金星链

芝麻开门交易所Maker:去中心化金融流动性模型

随着开放金融协议的潜力变得越加清晰,一些应用比其他应用的采用速度更快。就锁定的价值和交易量而言,Maker目前占据主导地位,Compound和Uniswap紧随其后,就流动性来说,它们远远领先于.

[0:31ms0-0:816ms