改名 Meta 之后,Facebook 的元宇宙愿景正在一点点实现。这一次,Facebook 把目光投在了元宇宙社交上。
Meta 发布语音处理模型 XLS-R
近日,Meta 正式发布 XLS-R——一套用于各类语音任务的新型自监督模型。据悉,XLS-R 由海量公共数据训练而成(数据量是过去的十倍),能够将传统多语言模型的语言支持量增加两倍以上。目前,XLS-R 共支持 128 种语言。
Meta 认为,语音交流是人们最自然的一种交互形式。“随着语音技术的发展,我们已经能够通过对话同自己的设备及未来的虚拟世界直接互动,由此将虚拟体验与现实世界融为一体。”
日本科技巨头索尼:公司有能力在元宇宙中发挥主导作用:5月18日消息,日本科技巨头索尼集团公司表示,其有能力在虚拟世界(元宇宙)或沉浸式虚拟世界中发挥主导作用。索尼首席执行官吉田贤一郎战略简报会上表示:“元宇宙兼具社交空间和实时网络空间,游戏、音乐、电影和动漫等在这里交汇,我们的目标是将移动空间变成一个新的娱乐空间,我们相信移动将成为下一个大趋势。”
据此前消息,今年2月份,索尼与曼城达成合作,着手创建全球首个元宇宙足球场。此外,索尼参与了致力于元宇宙发展的游戏巨头Epic Games的20亿美元融资。(凤凰网科技)[2022/5/18 3:24:48]
这与扎克伯格此前宣称的“公司业务将以元宇宙优先”不谋而合。此前,扎克伯格曾概述了他建立“元世界”的计划:一个建立在我们自己的数字世界之上的数字世界,包括虚拟现实和增强现实。“我们相信元宇宙将会接替移动互联网”。
MContent与普华永道合作在元宇宙推出记录片《Ripple vs SEC传奇》:4月2日消息,总部位于迪拜的基于加密货币的内容平台MContent已与普华永道(PwC)中东合作,在元宇宙的一个虚拟剧院推出纪录片《Ripple vs SEC传奇》。该记录片深入探讨了自2020年以来美国证券交易委员会(SEC)对区块链公司Ripple Labs提起的诉讼。在该案件中,美国证券交易委员会指控Ripple使用XRP筹集了13亿美元的未注册数字资产证券。SEC称是XRP不是货币而是证券,因此受到严格的证券法的约束。Ripple的辩护律师包括美国证券交易委员会前主席Mary Jo White,一直在积极进行诉讼。(Variety)[2022/4/2 14:00:23]
而 XLS-R 作为元宇宙社交中必不可少的一环,可以帮助母语不同的人在元宇宙无障碍对话。
韩国高丽大学在元宇宙开设咨询中心:3月15日消息,韩国高丽大学教育学院宣布,它已在使用元宇宙开设了一个咨询中心。高丽大学元宇宙咨询中心计划利用元宇宙咨询平台“Metaforest”,为本科生提供职业、学业、心理健康等个性化的心理咨询服务。(每日经济日报)[2022/3/15 13:57:38]
值得一提的是,为了通过单一模型实现对多种语言的广泛语音理解能力,Meta 对 XLS-R 进行了微调,使其获得语音识别、语音翻译及语言识别等功能。据介绍,XLS-R 在 BABEL、CommonVoice 以及 VoxPopuli 语音识别基准测试,CoVoST-2 的外语到英文翻译基准测试,以及 VoxLingua107 语言识别基准测试中都取得了不错的成绩。
为了尽可能降低功能访问门槛,目前,Meta 与 Hugging Face 联手发布了模型本体,并通过 fairseq GitHub repo 全面开放。
清华大学沈阳:金融在元宇宙的运行中,属于不可缺少的基础设施:11月27日消息,伴随着Facebook改名、多家游戏公司宣布入局等事件,走热的元宇宙概念正在引发市场多方关注。清华大学新媒体研究中心执行主任沈阳表示:“金融在元宇宙的运行中,属于不可缺少的基础设施。它的作用与现实世界的金融体系一样,随着元宇宙进一步发展,对整个现实社会的模拟程度加强,这样在虚拟世界里同样需要金融系统支撑。”在谈及对未来元宇宙与金融的契合可能性时,沈阳将其大致分为了几个方面:首先是传统金融公司参与搭建元宇宙基础设施;其次是在完成基础搭建后,元宇宙资产货币化后,也会带来大量的金融公司参与机会;再者,金融公司未来的获客等活动也可以转到元宇宙中完成。“从生产到交互,在使用与交易过程中,虚拟世界的个体活动以及公司经营,也会需要保险等金融配套服务,包括元宇宙的小微平台会产生贷款需求,方方面面都需要金融的支撑。[2021/11/27 12:35:18]
试用地址:https://huggingface.co/spaces/facebook/XLS-R-2B-22-16
XLS-R 工作原理
据介绍,XLS-R 在 wav2vec 2.0 训练集上接受了超过 43 万 6 千小时的公开语音录音训练,从而实现了对语音表达的自监督学习方法。这样的训练量已经达到去年发布的当时最强的模型 XLSR-53 的 10 倍。利用从会议记录到有声读物的多种语音数据来源,XLS-R 的语言支持范围扩展到 128 种,涵盖的语种量达到前代模型的近 2.5 倍。
作为 Meta 打造的有史以来最大模型,XLS-R 中包含超过 20 亿个参数,性能远高于其他同类模型。Meta 表示,事实证明,更多参数能够更充分地体现、数据集中的各类语种。此外,Meta 还发现,规模更大的模型在单一语言预训练方面的性能也同样优于其他较小模型。
Meta 在四种主要多语言语音识别测试中对 XLS-R 做出评估,发现它在 37 种语言上获得了超越以往模型的效能。具体测试场景为:BABEL 中选取 5 种语言,CommonVoice 中选取 10 种语言,MLS 中选取 8 种语言,以及 VoxPopuli 上选取 14 种语言。
BABEL 上的单词错误率基准测试结果。XLS-R 较前代模型实现了显著改进。
此外,Meta 还评估了语音翻译模型,即将录音资料直接翻译成另一种语言。为了打造一套能够执行多种任务的模型, Meta 同时在 CoVoST-2 基准测试的数个不同翻译方向上对 XLS-R 进行了微调,使其能够在英语与多达 21 种语言之间实现内容互译。
在使用 XLS-R 对英语以外的其他语言进行编码时,获得了显著的效能提升,这也是多语言语音表达领域的一次重大突破。据 Meta 介绍,XLS-R 在低资源语言学习中实现了显著改进,例如印尼语到英语的翻译,其中 BLEU 准确率平均翻了一番。BLEU 指标的提升是指模型给出的自动翻译结果与处理同一内容的人工翻译结果间重合度更高,代表着模型在改进口语翻译能力方面迈出了一大步。
以 BLEU 指标衡量的自动语音翻译准确率,其中较高值表示 XLS-R 从高资源语言(例如法语、德语)、中资源语言(例如俄语、葡萄牙语)或低资源语言(例如泰米尔语、土耳其语)语音记录翻译至英语时的准确率。
Meta 认为,XLS-R 证明扩大跨语言预训练规模可以进一步提高低资源语言的理解性能。它不仅提高了语音识别率,同时也将由外语到英语的语音翻译准确率提高了一倍以上。
“XLS-R 是我们朝着以单一模型理解多种不同语言(语音)目标迈出的重要一步,也代表着我们在利用公共数据推进多语言预训练方面做出的最大努力。我们坚信这是一条正确的探索方向,将让机器学习应用更好地理解所有人类语音、并促进后续研究,大大降低语音技术在全球范围内、特别是服务匮乏社群中的使用门槛。我们将不断开发新方法,通过低监督学习拓展模型的语言理解能力、逐步使其覆盖全球 7000 多种语言,实现算法的持续更新。”Meta 提到。
https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages/
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。