作者:Callum/img/2023526103920/0.jpg">
图片来源:/img/2023526103920/1.jpg">
4. ZKML的挑战
虽然ZKML在不断改进和优化,但该领域还处于早期发展阶段,仍存在一些从技术到实践的挑战:
DoraHacks平台开始支持基于零知识证明的隐私二次方资助:据官方消息,DoraHacks开发者激励平台HackerLink已经完成整合Dora Factory隐私投票模块MACI,并开始支持基于零知识证明的二次方投票和二次方资助轮次。
MACI(最小化抗共谋基础设施)是Dora Factory以太坊工厂的核心模块之一,通过对投票进行加密以及对结果提供零知识证明,实现隐私投票,将链上和链下治理的投票过程转化为非合作博弈,以达到抗共谋的目的。
DoraHacks对MACI代码中的安全性和效率问题进行了系统性优化。ETH Denver 2022将于2月20日与DoraHacks共同推出第一个中等规模的MACI二次方资助轮次,超过2,000名开发者和10,000名参会者将通过DoraHacks平台进行零知识二次方投票,这是MACI和链上隐私投票的第一次中等规模应用。[2022/1/28 9:19:46]
以最小的精度损失量化
StarkWare零知识证明验证程序ethSTARK已通过PeckShield安全审计:8月11日消息,区块链安全公司PeckShield官方宣布,StarkWare公司零知识证明验证程序ethSTARK已通过其全面安全审计服务。
ethSTARK是一个以太坊基金会支持的,由StarkWare公司开发的零知识证明(ZKP,Zero Knowledge Proof) 验证程序,它实现了比现有ZKP算法更快的验证速度,进一步提升了StarkWare在零知识证明领域的技术影响力。[2020/8/11]
电路的大小,特别是当一个网络由多层组成时
Gate.io研究院发布“零知识证明于区块链中的落地应用”报告:Gate.io研究院于今日发布“零知识证明于区块链中的落地应用”报告。报告指出,在区块链技术加快发展的背景下,多种应用场景应运而生,随之而来的是用户在隐私安全方面的更高需求。当前,众多区块链开发团队提出了多种不同的用户隐私安全保护机制。
其中,零知识证明与区块链技术相结合作为一种新方案为提高区块链隐私安全性提供了更多可能。该报告结合“零知识证明”的采纳项目、区块链系统“Zcash”的相关情况,对“Zcash”加密技术以及零知识证明进行了深入探讨。 详情点击原文链接。[2020/6/28]
矩阵乘法的有效证明
对抗性攻击
这些挑战一是会影响到机器学习模型的准确性,二是会影响其成本和证明速度,三是模型窃取攻击的风险。
目前对于这些问题的改进正在进行,@0xPARC 在 2021 年的ZK-MNIST演示展示了如何在可验证电路中执行小规模MNIST图像分类模型;Daniel Kang 对ImageNet规模模型进行了同样的操作,目前 ImageNet 规模的模型的精度已经提高到 92%,预计将很快达到与更广泛的ML空间的进一步的硬件加速。
ZKML 仍处于早期开发阶段,但它已经开始展现不少成果,可以期待看到更多ZKML的链上创新应用。随着 ZKML 的不断发展,我们可以预见未来隐私保护机器学习将成为常态。
金色财经
澎湃新闻
金色荐读
金色财经 善欧巴
链得得
LD Capital
深潮TechFlow
Odaily星球日报
Foresight News
BTCStudy
iBox
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。