GEN:EigenLayer:将以太坊级别的信任引入中间件

原文标题:《EigenLayer:将以太坊级别的信任引入中间件》原文作者:Jiawei,IOSGVentures

引子

来源:EigenLayer,IOSGVentures

在当前的以太坊生态中,存在着许多的中间件。

左侧是应用端的视角。一些dApp的运行依赖于中间件:例如DeFi衍生品依赖于预言机喂价;例如资产的跨链转移依赖于跨链桥作为第三方中继。

右侧是模块化的视角。例如在Rollup排序中我们需要构建Sequencer网络;在链下数据可用性中我们有DAC或者PolygonAvail和Celestia的DA-PurposeLayer1。

这些大大小小的中间件独立于以太坊本身而存在,运行着验证者网络:即投入一些代币和硬件设施,为中间件提供服务。

我们对中间件的信任源于?EconomicSecurity,如果诚实工作可以得到回报,如果作恶则将导致质押代币的Slashing。这种信任的级别来源于质押资产的价值。

如果我们把以太坊生态中所有依赖EconomicSecurity的协议/中间件比作一个蛋糕,那么看起来会像是这样:资金根据质押网络的规模被切分成大大小小的部分。

EigenLayer宣布提高流动性质押代币 (LST) 的新上限:金色财经报道,再质押协议EigenLayer宣布提高流动性质押代币 (LST) 的新上限。LST(包括 stETH、rETH 和 cbETH)的上限现在将被取消,上限解除后,用户将能够将这些代币中的任何一种存入 EigenLayer。当任何LST达到10万个代币的里程碑时,将实施全球暂停。这扩大了再抵押的能力,并刺激更广泛的用户网络积极参与抵押。

此次上限提高的程序将遵循之前采取的类似治理流程:1、协议参数变更批准:变更需要通过多重签名治理系统批准。2、10天时间锁:一旦获得批准,用于提高上限的运营多重签名交易将在 10 天时间锁内排队,与治理流程和安全协议保持一致。3、触发操作:10天锁定期过后,Operations Multisig 将触发时间锁定合约的操作,启动参数更改并执行修改。4、触发暂停:如果任何一个 LST 重新抵押的 ETH 达到约 100k ETH,Pauser Multisig 将触发全局暂停。[2023/8/12 16:21:49]

来源:IOSGVentures

然而,当前的EconomicSecurity仍然存在一些问题:

对于中间件。中间件的验证者需要投入资金以守护网络,这需要一定的边际成本。出于代币价值捕获的考虑,验证者往往被要求质押中间件原生代币,由于价格波动导致其风险敞口存在不确定性。

其次,中间件的安全性取决于质押代币的总体价值;如果代币暴跌,攻击网络的成本也随之降低,甚至可能引发潜在的安全事件。该问题在一些代币市值较为薄弱的协议上尤为明显。

EigenLayer创始人:EigenLayer将成为以太坊质押层的一部分:金色财经报道,EigenLayer首席执行官兼创始人Sreeram Kannan表示,理想情况下,EigenLayer 将成为以太坊质押层的一部分,无论是通过协议升级还是以太坊改进协议(EIP)。Kannan 解释说, EigenLayer并不是一个新链或新的 Layer-1,相反,它是一个智能合约系统,允许ETH质押者“选择加入”为其他系统提供服务,这被称为“主动验证服务”,虽然该平台目前正在进行“初始管理过程”,并出于“谨慎”目的将其列入白名单,但它最终将成为一个完全无需许可的平台。[2023/7/26 15:58:48]

对于dApp。举例而言,一些dApp不必依赖于中间件,而只需要信任以太坊;对于一些依赖中间件的dApp,实际上其安全同时依赖于以太坊和中间件的信任假设。

中间件的信任假设本质上来源于对分布式验证者网络的信任。而我们看到由于预言机错误喂价导致的资产损失事件不在少数。

这样,进一步地带来木桶效应:

假设某个可组合性极高的DeFi应用A,相关牵扯的TVL达到数十亿级别,而预言机B的信任仅仅依赖于数亿级别的质押资产。那么一旦出现问题,由于协议间关联所带来的风险传导和嵌套,可能无限放大预言机所造成的损失;

假设某模块化区块链C,采用数据可用性方案D、执行层方案F等等,如果其中的某一部分出现行为不当/遭受攻击,波及范围将是C整条链本身,尽管系统其他部分并没有问题。

可见系统安全取决于其中的短板,而看似微不足道的短板可能引发系统性风险。

EigenLayer做了什么?

EigenLayer的想法并不复杂:

类似于共享安全,尝试把中间件的EconomicSecurity提升至等同于以太坊的级别。

EigenLayer将增加LST上限,第三季度将上线Operator测试网:7月1日消息,以太坊再质押协议EigenLayer宣布将增加流动性质押代币(LST)的上限,不过相关协议参数更改还须获得多重签名治理系统的批准。EigenLayer操作多重签名通过时间锁执行例行升级和维护,对所有安全关键操作强制执行至少10天的延迟,这也意味着,7月10日之后Operations多签可以取消上限。EigenLayer预计将在7月10日当周提高LST上限。届时,LST上限(包括rETH、stETH和cbETH)将增加到15,000个代币(每类LST),没有个人存款限制。一旦所有LST存款的总和达到3万枚代币,将启动暂停LST再质押。

EigenLayer表示,随着LST上限的增加,将探索EigenLayer路线图的下一步。重点仍然是增强再质押体验,同时确保安全性和去中心化。具体计划是,第三季度上线Operator测试网,第四季度上线主动验证服务(AVS)测试网,预计2024年第一季度上线AVS主网。[2023/7/1 22:12:06]

来源:EigenLayer,IOSGVentures

这是通过「Restaking」来完成的。

Restaking即是把以太坊验证者网络的ETH敞口进行二次质押:

原先,验证者在以太坊网络上进行质押以获得收益,一旦作恶则将导致对其质押资产的Slash。同理,在进行Restaking之后能够获得在中间件网络上的质押收益,但如果作恶则被Slash原有的ETH质押品。

具体Restake的实施方法是:质押者可以把以太坊网络中提款地址设置为EigenLayer智能合约,也即赋予其Slashing的权力。

Rollup框架产品Rollkit集成比特币Sovereign Rollup数据可用性层:金色财经报道,模块化区块链Celestia旗下模块化Rollup框架产品Rollkit(曾称作Rollmint)宣布支持比特币Sovereign Rollup,允许Rollkit Rollup使用比特币的数据可用性。开发者可以创建具有任意执行环境的Rollup,继承比特币的数据可用性保障和安全保障。

通过此次集成,可以在比特币上运行EVM作为Rollkit Sovereign Rollup,扩大Rollup的可能性,并帮助在比特币上启动一个健康的区块空间费用市场,确保安全预算更可持续。Rollkit表示,此次实现基于比特币的Taproot升级和Ordinals使用比特币发布任意数据。[2023/3/6 12:44:32]

来源:Messari,IOSGVentures

除直接Restake$ETH之外,EigenLayer提供了其他两种选项以扩展TotalAddressableMarket,即分别支持质押WETH/USDC的LPToken和stETH/USDC的LPToken。

此外,为了延续中间件原生代币的价值捕获,中间件可以选择在引入EigenLayer的同时保持对其原生代币的质押要求,即EconomicsSecurity分别来源于其原生代币和以太坊,从而避免单代币的价格暴跌引发的「死亡螺旋」。

可行性

总体来看,对验证者来说,参与EigenLayer的Restaking有资本要求和硬件要求两点。

参与以太坊验证的资本要求是32ETH,在Restaking上保持不变,但在引入到新的中间件时会额外增加潜在的风险敞口,如Inactivity和Slashing。

动态 | 物流平台 DexFreight 试水 DeFi 通过 Maker 获取去中心化资金来源:物流平台 DexFreight 联合金融供应链交换平台 Centrifuge 和 Maker Foundation 发起一项试点项目,该项目在去中心化物流平台 DexFreight 进行,通过对货运发票实现代币化处理,结合物流抵押品与 DeFi 中可用的低成本流动性,从而填补货运公司短期融资缺口。[2019/10/10]

来源:Ethereum,IOSGVentures

而硬件设施方面,为了降低验证者的参与门槛,实现足够的去中心化,合并后以太坊验证者的硬件要求很低。稍好的家用电脑其实已经可以达到推荐配置。这时一些硬件要求其实是溢出的。类比于矿工在算力资源足够的时候同时挖多个币种,仅从硬件方面来说,Restaking相当于用溢出的这部分硬件Capability去为多个中间件提供支持。

听起来很像Cosmos的InterchainSecurity,仅此而已?实际上,EigenLayer对后合并时代以太坊生态的影响可能不止于此。本文我们选取EigenDA来做进一步阐述。

来源:EigenLayer,IOSGVentures

EigenDA

注:此处仅十分简略地介绍数据可用性、纠删码和KZG承诺。数据可用性层是模块化视角下的拆分,用于为Rollup提供数据可用性。纠删码和KZG承诺是数据可用性采样的组成部分。采用纠删码使得随机下载一部分数据即可验证所有的数据可用性,并在必要时重建所有数据。KZG承诺用于确保纠删码被正确编码。为避免偏离本文主旨,本节将省略一些细节、名词解释和前因后果,如对本节Context有疑问,可阅读IOSG此前的文章「合并在即:详解以太坊最新技术路线」以及「拆解数据可用层:模块化未来中被忽视的乐高积木」。

作为简单回顾,我们把当前的DA方案划分为链上和链下两部分。

链上部分,PureRollup是指单纯把DA放到链上的方案,即需要为每个字节恒定支付16gas,这将占到Rollup成本的80%-95%之多。在引入Danksharding之后,链上DA的成本将得到大幅降低。

在链下DA中,每种方案在安全性和开销上有一定的递进关系。

PureValidium是指仅把DA放在链下,而不做任何保证,链下数据托管服务商随时有关机下线的风险。而特定于Rollup中的方案包括StarkEx、zkPorter和ArbitrumNova,即由一小部分知名第三方组成DAC来保证DA。

EigenDA属于通用化的DA解决方案,与Celestia和PolygonAvail同属一类。但EigenDA和其余两者的解决思路又有一些差异。

作为对比,我们首先忽略EigenDA,来看Celestia的DA是如何工作的。

来源:Celestia

以Celestia的QuantumGravityBridge为例:

以太坊主链上的L2Contract像往常一样验证有效性证明或欺诈证明,区别在于DA由Celestia提供。Celestia链上没有智能合约、不对数据进行计算,只确保数据可用。

L2Operator把交易数据发布到Celestia主链,由Celestia的验证人对DAAttestation的MerkleRoot进行签名,并发送给以太坊主链上的DABridgeContract进行验证并存储。

这样实际上用DAAttestation的MerkleRoot代替证明了所有的DA,以太坊主链上的DABridgeContract只需要验证并存储这个MerkleRoot。对比将DA存储到链上而言,这样使得保证DA的开销得到了极大的降低,同时由Celestia链本身提供安全保证。

在Celestia链上发生了什么?首先,DataBlob通过P2P网络传播,并基于Tendermint共识对DataBlob达成一致性。每个Celestia全节点都必须下载整个DataBlob。

由于Celestia本身仍然作为Layer1,需要对DataBlob进行广播和共识,这样一来实际上对网络的全节点有着很高的要求,而实现的吞吐量却未必高。

而EigenLayer采用了不同的架构——不需要做共识,也不需要P2P网络。

如何实现?

来源:EigenLayer

首先,EigenDA的节点必须在EigenLayer合约中Restake他们的ETH敞口,参与到Restaking中。EigenDA节点是以太坊质押者的子集。

其次,数据可用性的需求方拿到DataBlob后,使用纠删码和KZG承诺对DataBlob进行编码,并把KZG承诺发布到EigenDA智能合约。

随后Disperser把编码后的KZG承诺分发给EigenDA节点。这些节点拿到KZG承诺后,与EigenDA智能合约上的KZG承诺进行比较,确认正确后即对Attestation进行签名。之后Disperser一一获取这些签名,生成聚合签名并发布到EigenDA智能合约,由智能合约进行签名的验证。

在这个工作流中,EigenDA节点仅仅对Attestation进行了签名,来声称自己对编码后的DataBlob进行了存储。而EigenDA智能合约仅仅对聚合签名的正确性进行验证。那么我们如何确保EigenDA节点真的对数据可用进行了存储呢?

EigenDA采用了?ProofofCustody的方法。即针对这样一种情况,有一些LazyValidator,他们不去做本应该做的工作。而是假装他们已经完成了工作并对结果进行签名。

ProofofCustody的做法类似于欺诈证明:如果出现LazyValidator,任何人可以提交证明给EigenDA智能合约,由智能合约进行验证,如验证通过即对LazyValidator进行Slashing。

小结

经过上述讨论和比较,我们可以看到:

Celestia的思路与传统的Layer1一致,做的其实是Everybody-talks-to-everybody和Everybody-sends-everyone-else-everything,而区别是Celestia的共识和广播是针对DataBlob来做的,即仅确保数据可用。

而EigenDA做的是Everybody-talks-to-disperser和Disperser-sends-each-node-a-unique-share,把数据可用性和共识进行了解耦。

EigenDA不需要做共识和参与P2P网络的原因是,它相当于搭了以太坊的「便车」:借助EigenDA部署在以太坊上的智能合约,Disperser发布Commitments和AggregatedAttestations、由智能合约验证聚合签名的过程都是在以太坊上发生的,由以太坊提供共识保证,因此不必受限于共识协议和P2P网络低吞吐量的瓶颈。

这体现为节点要求和吞吐量之间的差异。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金星链

以太坊价格TER:Do Kwon 的人生:名利与罪恶

作者:布兰在DoKwon的推特个人主页上,他的头像是这样一幅形象:一个类似托尼·史塔克钢铁侠造型的动漫卡通人物,戴着镶满六颗能量宝石的灭霸手套,脸上则是极像机械战警一样的面罩.

[0:15ms0-1:548ms