RUN:技术 | 链上账本数据写入慢?试试LSM

导读

首先问大家一个小问题?区块链的账本数据存储格式主要是什么类型的?

相信聪明的你一定知道是Key-Value类型存储。

下一个问题,这些Key-Value数据在底层数据库如何高效组织?

答案就是我们本期介绍的内容:LSM。

LSM是一种被广泛采用的持久化Key-Value存储方案,如LevelDB,RocksDB,Cassandra等数据库均采用LSM作为其底层存储引擎。

据公开数据调研,LSM是当前市面上写密集应用的最佳解决方案,也是区块链领域被应用最多的一种存储模式,今天我们将对LSM基本概念和性能进行介绍和分析。

LSM-Tree背景:追本溯源

LSM-Tree的设计思想来自于一个计算机领域一个老生常谈的话题——对存储介质的顺序操作效率远高于随机操作。

如图1所示,对磁盘的顺序操作甚至可以快过对内存的随机操作,而对同一类磁盘,其顺序操作的速度比随机操作高出三个数量级以上,因此我们可以得出一个非常直观的结论:应当充分利用顺序读写而尽可能避免随机读写。

Figure1Randomaccessvs.Sequentialaccess

青海省长刘宁:推广应用区块链等信息技术 推动产业链数字化改造:6月17日消息,青海省人民政府省长刘宁刊文《以“四种经济形态”为引领加快构建高质量发展新格局》。他表示,数字经济在创造新的产业形态、商业模式和创新模式的同时,也深刻地影响了传统产业及其相关的商业和创新模式。刘宁在文中提出,下一步将充分发挥青海在发展数字经济方面的比较优势,建设大数据产业园、数字经济发展展示运行平台,组建数字经济发展集团,加快建设“云上青海”。推进5G网络和智慧广电建设,推广应用物联网、云计算、大数据、区块链、人工智能等新一代信息技术,整合现有产业、企业和产品,与国际国内市场耦合,发展平台经济,谋划和推动产业链数字化改造。(学习时报)[2020/6/17]

考虑到这一点,如果我们想尽可能提高写操作的吞吐量,那么最好的方法一定是不断地将数据追加到文件末尾,该方法可将写入吞吐量提高至磁盘的理论水平,然而也有显而易见的弊端,即读效率极低,我们称这种数据更新是非原地的,与之相对的是原地更新。

为了提高读取效率,一种常用的方法是增加索引信息,如B+树,ISAM等,对这类数据结构进行数据的更新是原地进行的,这将不可避免地引入随机IO。

LSM-Tree与传统多叉树的数据组织形式完全不同,可以认为LSM-Tree是完全以磁盘为中心的一种数据结构,其只需要少量的内存来提升效率,而可以尽可能地通过上文提到的Journaling方式来提高写入吞吐量。当然,其读取效率会稍逊于B+树。

通化县法院采用区块链智能合约技术 实现执行“一键立案”:3月16日消息,通化县法院采用区块链智能合约技术,实现执行“一键立案”。2019年末,通化县法院成为吉林省法院系统首批审执衔接工作试点单位,探索以区块链智能合约技术为依托,以调解结案为切入点,逐步推行审执工作自动衔接。在区块链智能合约嵌入调解书案件中,作为当事人需要进行的操作只有一步:点击“未履行完毕”按钮,即可跳过后续繁复程序直接完成执行立案,后台将通过区块链智能合约技术自动生成执行申请书、抓取当事人信息、抓取执行依据、自动执行立案等。(新浪网)[2020/3/16]

LSM-Tree数据结构:抽丝剥茧

图2展示了LSM-Tree的理论模型(a)和一种实现方式(b)。LSM-Tree是一种层级的数据结构,包含一层空间占用较小的内存结构以及多层磁盘结构,每一层磁盘结构的空间上限呈指数增长,如在LevelDB中该系数默认为10。

Figure2LSM与其LevelDB实现

对于LSM-Tree的数据插入或更新,首先会被缓存在内存中,这部分数据往往由一颗排序树进行组织。

当缓存达到预设上限,则会将内存中的数据以有序的方式写入磁盘,我们称这样的有序列为一个SortedRun,简称为Run。

随着写入操作的不断进行,L0层会堆积越来越多的Run,且显然不同的Run之前可能存在重叠部分,此时进行某一条数据的查询将无法准确判断该数据存在于哪个Run中,因此最坏情况下需要进行等同于L0层Run数量的I/O。

为了解决该问题,当某一层的Run数目或大小到达某一阈值后,LSM-Tree会进行后台的归并排序,并将排序结果输出至下一层,我们将一次归并排序称为Compaction。如同B+树的分裂一样,Compaction是LSM-Tree维持相对稳定读写效率的核心机制,我们将会在下文详细介绍两种不同的Compaction策略。

声音 | Web Summit创始人:区块链也许是一项革命性的技术 但需很长的时间来发展:据界面报道,全球网络峰会(Web Summit)的创始人Paddy Cosgrave接受专访时表示,区块链技术的落地应用很少。也许它是一项革命性的技术,但是需要很长的时间来发展。就我个人而言,更看好另一项技术FHE(fully homomorphic encryption,全同态加密技术),我认为它将比区块链更有发展前景。我认为Libra的加密货币特性比较少,反而更像是支付宝、财付通这样的支付工具。Facebook在使用超过150种货币的200多个国家运营,Libra为Facebook提供了一种全球通用的电子货币工具来解决交易和支付的问题。Facebook是用更开放、更有合作精神的态度来解决全球通用的货币问题,尽管很多人担忧年轻一代越来越少使用Facebook,意味着Libra所依赖的用户群体在减少,但是他们忽略了Facebook旗下的Instagram和Whatsapp两大软件的庞大用户群。[2019/9/1]

另外值得一提的是,无论是从内存到磁盘的写入,还是磁盘中不断进行的Compaction,都是对磁盘的顺序I/O,这就是LSM拥有更高写入吞吐量的原因。

Levelingvs.Tiering:一读一写,不分伯仲

LSM-Tree的Compaction策略可以分为Leveling和Tiering两种,前者被LevelDB,RocksDB等采用,后者被Cassandra等采用,称采用Leveling策略的的LSM-Tree为LeveledLSM-Tree,采用Tiering的LSM-Tree为TieredLSM-Tree,如图3所示。

沃尔玛利用区块链分类账技术 可以将产品追溯回农场:沃尔玛公司开始利用在线分类账技术来管理芒果,浆果和几十种其他产品的供应链数据。这个系统是由国际商业机器公司(International Business Machines Corp.)制造,在沃尔玛测试区块链可追溯性的过程中,沃尔玛员工可以检查货架上或后台的产品,并用零售商的智能应用程序追溯到农场。在产品召回过的过程中可以追溯不合格食物的来源。[2018/2/7]

Figure3两种Compaction策略对比

▲Leveling

简而言之,Tiering是写友好型的策略,而Leveling是读友好型的策略。在Leveling中,除了L0的每一层最多只能有一个Run,如图3右侧所示,当在L0插入13时,触发了L0层的Compaction,此时会对Run-L0与下层Run-L1进行一次归并排序,归并结果写入L1,此时又触发了L1的Compaction,此时会对Run-L1与下层Run-L2进行归并排序,归并结果写入L2。

▲Tiering

反观Tiering在进行Compaction时并不会主动与下层的Run进行归并,而只会对发生Compaction的那一层的若干个Run进行归并排序,这也是Tiering的一层会存在多个Run的原因。

区块链领域首个国家标准获批立项:《信息技术 区块链和分布式账本技术 参考架构》:据中国区块链技术和产业发展论坛官方公众号消息,根据《国家标准委关于下达2017年第四批国家标准制修订计划的通知》(国标委综合[2017]128号),《信息技术 区块链和分布式账本技术 参考架构》作为区块链领域的首个国家标准获批立项。中国区块链技术和产业发展论坛于2016年10月18日,在工业和信息化部、国家标准化管理委员会工业标准二部的指导下,由中国电子技术标准化研究院、蚂蚁金服、万向控股、微众银行、平安保险、乐视金融、万达网络科技等共同发起成立。[2018/1/5]

▲对比分析

相比而言,Leveling方式进行得更加贪婪,进行了更多的磁盘I/O,维持了更高的读效率,而Tiering则相正好反。

本节我们将对LSM-Tree的设计空间进行更加形式化的分析。

LSM层数

布隆过滤器

LSM-Tree应用布隆过滤器来加速查找,LSM-Tree为每个Run设置一个布隆过滤器,在通过I/O查询某个Run之前,首先通过布隆过滤器判断待查询的数据是否存在于该Run,若布隆过滤器返回Negative,则可断言不存在,直接跳到下个Run进行查询,从而节省了一次I/O;而若布隆过滤器返回Positive,则仍不能确定数据是否存在,需要消耗一次I/O去查询该Run,若成功查询到数据,则终止查找,否则继续查找下一个Run,我们称后者为假阳现象,布隆过滤器的过高的假阳率会严重影响读性能,使得花费在布隆过滤器上的内存形同虚设。限于篇幅本文不对布隆过滤器做更多的介绍,直接给出FPR的计算公式,为公式2.

其中是为布隆过滤器设置的内存大小,为每个Run中的数据总数。读写I/O

考虑读写操作的最坏场景,对于读操作,认为其最坏场景是空读,即遍历每一层的每个Run,最后发现所读数据并不存在;对于写操作,认为其最坏场景是一条数据的写入会导致每一层发生一次Compaction。

核心理念:基于场景化的设计空间

基于以上分析,我们可以得出如图4所示的LSM-Tree可基于场景化的设计空间。

简而言之,LSM-Tree的设计空间是:在极端优化写的日志方式与极端优化读的有序列表方式之间的折中,折中策略取决于场景,折中方式可以对以下参数进行调整:

当Level间放大比例时,两种Compaction策略的读写开销是一致的,而随着T的不断增加,Leveling和Tiering方式的读开销分别提高/减少。

当T达到上限时,前者只有一层,且一层中只有一个Run,因此其读开销到达最低,即最坏情况下只需要一次I/O,而每次写入都会触发整层的Compaction;

而对于后者当T到达上限时,也只有一层,但是一层中存在:

因此读开销达到最高,而写操作不会触发任何的Compaction,因此写开销达到最低。

Figure4LSM由日志到有序列的设计空间

事实上,基于图4及上文的分析可以进行对LSM-Tree的性能进一步的优化,如文献对每一层的布隆过滤器大小进行动态调整,以充分优化内存分配并降低FPR来提高读取效率;文献提出“LazyLeveling”方式来自适应的选择Compaction策略等。

限于篇幅本文不再对这些优化思路进行介绍,感兴趣的读者可以自行查阅文献。

小结

LSM-Tree提供了相当高的写性能、空间利用率以及非常灵活的配置项可供调优,其仍然是适合区块链应用的最佳存储引擎之一。

本文对LSM-Tree从设计思想、数据结构、两种Compaction策略几个角度进行了由浅入深地介绍,限于篇幅,基于本文之上的对LSM-Tree的调优方法将会在后续文章中介绍。

作者简介叶晨宇来自趣链科技基础平台部,区块链账本存储研究小组

参考文献

.O’NeilP,ChengE,GawlickD,etal.Thelog-structuredmerge-tree(LSM-tree).ActaInformatica,1996,33(4):351-385.

.JacobsA.Thepathologiesofbigdata.CommunicationsoftheACM,2009,52(8):36-44.

.LuL,PillaiTS,GopalakrishnanH,etal.Wisckey:Separatingkeysfromvaluesinssd-consciousstorage.ACMTransactionsonStorage(TOS),2017,13(1):1-28.

.DayanN,AthanassoulisM,IdreosS.Monkey:Optimalnavigablekey-valuestore//Proceedingsofthe2017ACMInternationalConferenceonManagementofData.2017:79-94.

.DayanN,IdreosS.Dostoevsky:Betterspace-timetrade-offsforLSM-treebasedkey-valuestoresviaadaptiveremovalofsuperfluousmerging//Proceedingsofthe2018InternationalConferenceonManagementofData.2018:505-520.

.LuoC,CareyMJ.LSM-basedstoragetechniques:asurvey.TheVLDBJournal,2020,29(1):393-418.

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金星链

[0:0ms0-0:905ms